NMF-Density: NMF-Based Breast Density Classifier
نویسندگان
چکیده
The amount of tissue available in the breast, commonly characterized by the breast density, is highly correlated with breast cancer. In fact, dense breasts have higher risk of developing breast cancer. On the other hand, breast density influences the mammographic interpretation since it decreases the sensitivity of breast cancer detection. This sensitivity decrease is due to the fact that both cancerous regions and tissue appear as white areas in breast mammograms. This paper introduces new features to improve the classification of breast density in digital mammograms according to the commonly used radiological lexicon (BI-RADS). These features are extracted from non-negative matrix factorization (NMF) of mammograms and classified using machine learning classifiers. Using ground truth mammographic data, the classification performance of the proposed features is assessed. Simulation results show that the latter significantly outperforms existing density features based on principal component analysis (PCA) by achieving higher classification accuracy.
منابع مشابه
On the Joint Use of Nmf and Classification for Overlapping Acoustic Event Detection
In this paper, we investigate the performance of classifierbased non-negative matrix factorization (NMF) methods for detecting overlapping acoustic events. We provide evidence that the performance of classifier-based NMF systems deteriorates significantly in overlapped scenarios in case mixed observations are unavailable during training. To this end, we propose a K-means based method for artifi...
متن کاملIterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition
Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...
متن کاملApplication of Non-negative Matrix Factorization to Musical Instrument Classification
In this paper, a class of algorithms for automatic classification of individual musical instrument sounds is presented. Several perceptual features used in general sound classification applications were measured for 300 sound recordings consisting of 6 different musical instrument classes (piano, violin, cello, flute, bassoon, and soprano saxophone). In addition, MPEG-7 basic spectral and spect...
متن کاملBayesian Non-negative Matrix Factorization
We present a Bayesian treatment of non-negative matrix factorization (NMF), based on a normal likelihood and exponential priors, and derive an efficient Gibbs sampler to approximate the posterior density of the NMF factors. On a chemical brain imaging data set, we show that this improves interpretability by providing uncertainty estimates. We discuss how the Gibbs sampler can be used for model ...
متن کاملOn approximate equivalence of modularity, D and non-negative matrix factorization
Community structures detection is one of the fundamental problems in complex network analysis towards understanding the topology structures of the network and the functions of it. Nonnegative matrix factorization (NMF) is a widely used method for community detection, and modularity Q and modularity density D are criteria to evaluate the quality of community structures. In this paper, we establi...
متن کامل